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Let B(0,r)={z€C:|z|<r} be the open disc of radius r
and B[0,7] be closed disc of radius r.
Schwarz Lemma: Suppose that f: B(0,1) — B(0,1) is a
holomorphic Function with £(0)=0. Then

(0 |£(2)| < 2],z € BO,1)

(i) |r(0)| <1

(i) & these exists 2o € B(0,1),20 #0 such that [f(z0)| = |z0| ofF
|7/(0)| =1, then f must be of the Form f(z) =cz, z e B(0,1),

For some ¢ with |¢| = 1.

The Proof of the Schwarz lemma is an in immediate
Consequence of the Maximum modulus principle.
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maximum modulus principle

The maximun modulus principle: Suppose that Q is a
bounded domain (open and connected) inc, f is a
holomorplic function on @ and Bla.r] C Q. Then

|f(a)] <sup{|f(a+re™®)|: 6 €R}.
Equdlity occurs it and only of fis constant.

Proof: Assume that |f (a+rel®)| < |f(a)l, 6 €R Then the
holomorplic Lunction f has a power series expansion

f(z)=Y cn(z—a)", z€B(a,R),
and IF 0 <r< R, we have (Parsevels Formula)

Z‘cn|2r2" = 1/27r/jr ‘f (a—i—rew) ‘Qde.



Pr'ool: of the Schwarz lemma

It Follows that
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Hence 0=c;=c3 =", imP‘Y“’lﬁ f(z)=f(a), z€ B(a,r). Sihce
Q is connected, it Follows f must be a constant.



Proo@ of the Schwarz lemma

It Follows that

Y len P < £(@))? = |col*.
Hence 0=c;=c3 =", imP‘Y“’lﬁ f(z)=f(a), z€ B(a,r). Sihce
Q is connected, it Follows f must be a constant.
Prooll of the schwarz Lemma: Since £(0) =0, we have
0=0, f(2)=Xr_janz", z€B(0,1). Leth(z)=X2_janz"},
z€B(0,1). Thenh is holomorphic on B(0,1) and
f(2)=zh(z), z€ B(0,1). By the maximum modulus theorem

sup{|h(2)| : |2| <} = sup{|h(2)| : |z| =7} = Lsup{| f(2)| : |2| < r}
For adlr, 0<r<1 since |f(z)| <1 For al z€ B(0,1) we get,
on |C++il"|a r—1, that sup{|h(2)|;z € B(0,1)} <1. Hence

[f(2)] < |2| For all z€ B(0,1). This completes the prook of
(. :
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Moreover, if |f(z)| =|z| For some z)#0, then |n(z)|=1
and, by the maximum modulus theorem, h is a constant
Function of modulus 1, that is, there exists 6 c R such
that f(z) = zh(z) =2, z € B(0,1).



Pr'ool: of the Schwarz lemma

Moreover, if |f(z)| =|z| For some z)#0, then |n(z)|=1
and, by the maximum modulus theorem, h is a constant
Function of modulus 1, that is, there exists 6 c R such
that f(z) = zh(z) =2, z € B(0,1).
since L&) — p(z) For e B(0,1)\{0} and f(0)=0 it Follows
that
y R

7O =i T =l
1 |£/(0)| =1h(0)| =1, then by the maximum modulus
theorem, h is a constant function of modulus 1 and as
before flz)= ez 2€ B(0,1).

Ih(z)] = |A(0)] <1.
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Function mapping B(0,1) onto B(0,1) and also 9B(0,1) onto
dB(0,1). It is one to one on B[0,1. The inverse ok ¢, is

P-a-
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Theorem: For a fixed a e B(0,1), 9a(2) = £% is a rational
Function mapping B(0,1) onto B(0,1) and also 9B(0,1) onto
dB(0,1). It is one to one on B[0,1. The inverse ok ¢, is
P-a-

Proof: The Function ¢, is holomorphic in the whole
plane except For = =1/a which is outside B[0,1]. We see

that ¢ o(0u(2)) =2 Thus ¢, is one-one and ¢ is its
inverse. IFtcR, then

et —a
1-aett

el —a
et —@

‘:17

and we see that ¢, maps 9dB(0,1) into itself. The same is
true of ¢« hence ¢.(9B[0,1]) = aB[0,1]. Applying the
maximum modulus principle, we conclude that

9a(B(0,1)) C B(0,1). This is equally true of ¢.q.
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Answer: |f'(a)| < i:“g‘; To verify this, put g=ggofop
Since g5, 9o : B(0,1) = B(0,1), it Follows that

9:B(0,1) = B(0,1). Also, g(0)=0. Thus [¢'(0)| <1 by the
Schwarz lemma. Diﬁlcrcnﬂa-ﬁnﬂ g usinf] the chain rule,
we have

9'(0)=g5(B) f'(@) ¢/4(0).
This verifies the correctness of our answer since
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Schwarz lemma, in 3cncral

Suppose that o, B are complex numbers; |al, (| <1
Question: How large can |f'(a)| be ik £:B(0,1)— B(0,1)
and f(a) = B2

Answer: |f'(a)| < ZE . 1o veriby this, put g=ggofop

I-fal?
Since g5, 9o : B(0,1) = B(0,1), it Follows that
9:B(0,1) = B(0,1). Also, g(0)=0. Thus [¢'(0)| <1 by the
Schwarz lemma. Diﬁlcrcnﬂa-ﬁnﬂ g usinf] the chain rule,
we have

9'(0)=g5(B) f'(@) ¢/4(0).
This verifies the correctness of our answer since
0u(0) =1-|af?, gp(a)=(1-|a|?) "

Equality occurs it ond only ik g(z) =c., For some c:|c|=1

Thus f(2) = ¢.p(cga(2)), =€ B(O,1) BG
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the au+omorphi9m group

A remarkable Feature: f is a rational function, aH-houah
ho continuity assumption was made on f near the
boundary.

Theorm: Suppose that f is a biective holomorphic

Function on B(0,1) and that f(a) =0. Then there exists a
constant c:|¢| =1 such that

f(z)=c 0u(z), z€ B(0,1).

Proof: Let g be the inverse of f, defined by

g(f(2)) =2, ze€ B(0,1). Sihce f is ohe to one, f' has ho
zero in B(0,1), sog clc-(:incs a holomorphic Function on
B(0,1). We have |f'(a)| < 1 |05\2’ ' (0)| <1-|a>. By the
chain rule, ¢'(0) f'(a) = 1. Slhcc g (0) f'(a)=1, therefore
we must have |f/(a)| = — \0‘|2’ lg'(0)=1-|a|>2. Hence with

B=0, f must be of the Form ¢ ¢,.
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distance dccrcac;inﬁ

Let f:B(0,1) = B(0,1) be holomorphic. Then For any

a,be B(0,1), % A=

In particular, l‘lff<(z))“2 < |2 For al ze B(0,1).

Riemannion Metric: A ¢2 Function ¢:Q R, defined on
an open connected subset @ of C, is said to be a
Riemannion metric. & f: B(0,1) - B(0,1) is holomorphic,
then it is distance dccrcasing with respect to the
defined on B(0,1), that is,

Poincare metric: p(z) :=
fp)<p.
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distance dccrcac;inﬁ

Let f:B(0,1) = B(0,1) be holomorphic. Then For any

@) | < | a
a,be BO,1), | LSO < | k)

In particular, 1‘( f<(z))“2 < IZ

Riemannion Metric: A ¢2 Function ¢:Q R, defined on
an open connected subset @ of C, is said to be a
Riemannion metric. & f: B(0,1) - B(0,1) is holomorphic,
then it is distance dccrcasing with respect to the
defined on B(0,1), that is,

For al ze B(0,1).

Poincare metric: p(z) :=
fp) <p.
Here For any metric ¢:Q >R, onq, ond any 2
Function f: -0, the pull-back f*¢ is

(Fro)(2) = 1f (=) o(f(2))

ond it defines a metric on Q.

1\\2
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Ahlfors Schwarz lemma

The Gaussian curvature of a Riemannion metric ¢? is
defined to be

Ko(2) =—(2)% Alog@(2).

Claim: We will vcriFy that any holomorphic Function
f:9- B(0,r) defines a metric f*p, of constant negative
curvature on Q\{f' =0}, where p,.(z):= e is the
Poincare metric of B(0,r) and

* rIf'(2)] /

(f*pr)(z) == R z € Q\{f =0}.

Ahlfors Lemma: Let ¢ >0 be a continuous Lunction on
B(0,1). Assume that ¢ is C? oh the open set Dy :={¢p > 0}.

Suppose K, <1, on D, for some n>0 Then

i} 4

z € B(0,1).



Proof of the clam: For a holomorphic Function

defined on an open connected set acC with [f(2) <,
we have

Alog(r?—|fI%) ! log(r®~|f|?)
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Proof of the clam: For a holomorphic Function

defined on an open connected set acC with [f(2) <,
we have

Alog(r?—|fI%) ! log(r®~|f|?)

2
88
a(”')
3z \ 2P
B 7 77
‘4f<2 G UP))

. 12 |f‘2+|f‘2
‘“f‘(<ﬂfm%2)

VAT
‘4(ﬂfVP)

2
r T
Al =4 <r.
e =4 () M

(g Parﬁcular,




Pr'ool: of Ahlfors' lemma

it is easy, using the chain rule, to verify that ¢ € N¢(Q)
implies f*o=|f'|(pof) is N NEQ) F f: -0 is a
holomorphic maps of open connected sets in C.
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it is clear that the function y:= /;—f’ attain its maximum
on B(0,r) at some & € B(0,r). I (f*9)(€)=0, then ¢ =0.



Pr'ool: of Ahlfors' lemma

it is easy, using the chain rule, to veriby that ¢ € N¢(Q)
implies f*o=|f'|(pof) is N NEQ) F f: -0 is a
holomorphic maps of open connected sets in C.

Fix { €D, and let re(¢],1). Put p.(z) = = on B(,r).
Since p,(z) + as |z —»r and f ¢ is continuous on B0, 7],
it is clear that the function y:= /;—f’ attain its maximum
on B(0,r) at some & € B(0,r). I (f*9)(€)=0, then ¢ =0.
Hence we may assume that £ € Dy,. Then ¢ is also a
local maximum of logy, and it Follows that Alogy <0 at g
Now, at &:

0> Alogy = Alog f*@—Alogp,

> 4(f*(P27p3‘)7

that is, y(&) <1. Thus f*¢ <pT onh B(0,r). Lettingr11, we

conclude that (f9)(=) < Lz, € B0.1), a5 required. B &




aPPIicaJrions




aPPIicaJrions

DeFinition: For any open connected set QCC, let Ne(Q)

denote the set of continuous Functions >0 onhQ such
that ¢ is C2 on {9 >0} and Aloge >4¢? there.




applicaﬁons

DeFinition: For any open connected set QCC, let Ne(Q)

denote the set of continuous functions ¢ >0 on @ such
that ¢ is C2 on {¢ >0} and Alogg > 492 there.

As we have said before, ugina the chain rule, it is easy
to vcri?y:
Proposition: Suppose that f: Q= Q is a holomorphic

maps of open conhected sets inC. Then ¢ e N¢(&)
implies f“o =|f'|(pof) i5 In NC(Q).



applicaﬁons

DeFinition: For any open connected set QCC, let Ne(Q)
denote the set of continuous functions ¢ >0 on @ such
that ¢ is C2 on {¢ >0} and Alogg > 492 there.

As we have said before, ugina the chain rule, it is easy
to verify:

Proposition: Suppose that f: Q= Q is a holomorphic
maps of open conhected sets inC. Then ¢ e N¢(&)
implies f“o =|f'|(pof) i5 In NC(Q).

it Follows From the Ahlfors lemma that Ne(C) = {0}



aPPIicaJrions

DeFinition: For any open connected set QCC, let Ne(Q)
denote the set of continuous Functions >0 onhQ such
that ¢ is C2 on {9 >0} and Aloge >4¢? there.

As we have said before, ugina the chain rule, it is easy
to verify:

Proposition: Suppose that f: Q= Q is a holomorphic
maps of open conhected sets inC. Then ¢ e N¢(&)
implies f“o =|f'|(pof) i5 In NC(Q).

it Follows From the AhlFors lemma that Ne(C) = {0}.

Verikication: Pick ¢ in N¢(C). FixaeC. For anyr>|al,
taking f: B(0,r) = B(0,7), f(z) =2 AhlFors Lemma yields
(f*9)(@) = 9(a) < mlgm. As T == we see that p(a) =0.
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aPPIicaJrions

Corol\ary: Letf:C—Q QCC, be a holomophic Function.
£ Ne(@) # {0}, then f must be constant.

Liouvile's theorem: As a corolary, +aking Q= B(0,M),

we see that every bounded entire function must be a
constant.

Picards little theorem: Similarly, iF f:C—Co,), where
Cyo,13 :==C\{0,1} is holomophic, then f is constant.

Proo-(:: To vcri@y this, all we need to do is show that
N€(Cyo1y) # {0}. The non-zero function

0(2) = 2P/ 12|/ 21 (14 |2F) 1+ |2-1))P, B >0,
i5 IN N€(Cygy) Foro<p<z/m
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