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the Schwarz lemma



the Schwarz Lemma

Let B(0,r) = {z ∈ C : |z |< r} be the open disc of radius r

and B[0,r] be closed disc of radius r.
Schwarz Lcmma: Suppose that f : B(0,1) →B(0,1) is a
holomorphic function with f(0) = 0. Then

(i) |f(z)| ⩽ |z|,z ∈B(0,1)
(ii) ∣∣f ′(0)

∣∣⩽ 1
(iii) If these exists z0 ∈B(0,1),z0 ̸= 0 such that |f(z0)| = |z0| or∣∣f ′(0)

∣∣ = 1, then f must be of the form f(z) = cz, z ∈B(0,1),
for Some c with |c| = 1.

The Proof of the Schwarz lemma is an in immediate
Consequence of the Maximum modulus principle.
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maximum modulus principle

The maximun modulus principle: Suppose that Ω is a
bounded domain (open and connected) in C, f is a
holomorplic function on Ω, and B[a,r] ⊆ Ω. Then

|f(a)| ⩽ sup{|f(a+reiθ )| : θ ∈ R}.

Equality occurs if and only of f is constant.

Proof: Assume that ∣∣f (a+re1θ )∣∣⩽ |f(a)|, θ ∈ R. Then the
holomorplic function f has a power series expansion

f(z) = ∑cn(z –a)n, z ∈B(a,R),

and If 0 < r < R, we have (Parsevel’s formula)
∑

∣∣cn∣∣2 r2n = 1/2π
∫ π

–π

∣∣∣f (a+reiθ
)∣∣∣2 dθ .
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proof of the Schwarz lemma

lt follows that
∑ | cn |2 r2n ⩽ |f(a)|2 = |c0|2.

Hence 0 = c1 = c2 = · · · , implying f(z) = f(a), z ∈B(a,r). Since
Ω is connected, it follows f must be a constant.
Proof of the Schwarz Lemma: Since f(0) = 0, we have
a0 = 0 , f(z) = ∑∞

n=1 anz
n, z ∈B(0,1). Let h(z) = ∑∞

n=1 anz
n–1,

z ∈B(0,1). Then h is holomorphic on B(0,1) and
f(z) = zh(z), z ∈B(0,1). By the maximum modulus theorem

sup{|h(z)| : |z| ≤ r} = sup{|h(z)| : |z| = r} = 1
r sup{|f(z)| : |z| ≤ r}

for all r, 0 < r < 1. Since |f(z)| ≤ 1 for all z ∈B(0,1) we get,
on letting r → 1, that sup{|h(z)|;z ∈B(0,1)} ≤ 1. Hence
|f(z)| ≤ |z| for all z ∈B(0,1). This completes the proof of
(i).
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proof of the Schwarz lemma

Moreover, if ∣∣f (z0
)∣∣ =

∣∣z0
∣∣ for some z0 ̸= 0, then ∣∣h(z0

)∣∣ = 1
and, by the maximum modulus theorem, h is a constant
function of modulus 1, that is, there exists θ ∈ R such
that f(z) = zh(z) = eiθ z, z ∈B(0,1).
Since f(z)

z = h(z) for z ∈B(0,1)\{0} and f(0) = 0 it follows
that ∣∣f ′(0)

∣∣ = lim
z→0
z ̸=0

|f(z)|
|z| = lim

z→0
|h(z)| = |h(0)| ≤ 1.

If ∣∣f ′(0)
∣∣ = |h(0)| = 1, then by the maximum modulus

theorem, h is a constant function of modulus 1 and as
before f(z) = eiθ z, z ∈B(0,1).
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automorphisms of the disc

Theorem: For a fixed α ∈B(0,1), φα (z) := z–α
1–αz is a rational

function mapping B(0,1) onto B(0,1) and also ∂B(0,1) onto
∂B(0,1). It is one to one on B[0,1]. The inverse of φα is
φ–α .
Proof: The function φα is holomorphic in the whole
plane except for z = 1/ᾱ which is outside B[0,1]. We see
that φ–α (φα (z)) = z. Thus φα is one-one and φ–α is its
inverse. If t ∈ R, then∣∣∣∣ eit – α

1– ᾱeit

∣∣∣∣ =
∣∣∣∣ eit – α
e–it – α

∣∣∣∣ = 1,

and we see that φα maps ∂B(0,1) into itself. The same is
true of φ–α hence φα (∂B[0,1]) = ∂B[0,1]. Applying the
maximum modulus principle, we conclude that
φα (B(0,1)) ⊆B(0,1). This is equally true of φ–α .
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Schwarz lemma, in general

Suppose that α, β are complex numbers; |α|, |β | < 1
Question: How large can |f ′(α)| be if f : B(0,1) →B(0,1)
and f(α) = β ?
Answer: |f ′(α)| ≤ 1–|β |2

1–|α|2 . To verify this, put g = φβ ◦f ◦φ–α .
Since φβ , φα : B(0,1) →B(0,1), it follows that
g : B(0,1) →B(0,1). Also, g(0) = 0. Thus |g′(0)| ≤ 1 by the
Schwarz lemma. Differentiating g using the chain rule,
we have

g′(0) = φ ′
β (β ) f ′(α) φ ′

–α (0).

This verifies the correctness of our answer since
φ ′

α (0) = 1– |α|2, φ ′
α (α) = (1– |α|2)–1.

Equality occurs if and only if g(z) = cz , for some c : |c| = 1.
Thus f(z) = φ–β (cφα (z)), z ∈B(0,1).
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the automorphism group of
the unit disc



the automorphism group

A remarkable feature: f is a rational function, although
no continuity assumption was made on f near the
boundary.
Theorm: Suppose that f is a bijective holomorphic
function on B(0,1) and that f(α) = 0. Then there exists a
constant c : |c| = 1 such that

f(z) = c φα (z), z ∈B(0,1).

Proof: Let g be the inverse of f , defined by
g(f(z)) = z, z ∈B(0,1). Since f is one to one, f ′ has no
zero in B(0,1), so g defines a holomorphic function on
B(0,1). We have |f ′(α)| ≤ 1

1–|α|2 , |g′(0)| ≤ 1– |α|2 . By the
chain rule, g′(0)f ′(α) = 1. Since g′(0) f ′(α) = 1, therefore
we must have |f ′(α)| = 1

1–|α|2 , |g′(0)| = 1– |α|2 . Hence with
β = 0 , f must be of the form c φα .
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distance decreasing

Let f : B(0,1) →B(0,1) be holomorphic. Then for any
a,b ∈B(0,1),

∣∣∣ f(a)–f(b)
1–f(a)f(b)

∣∣∣≤ ∣∣∣ a–b
1–āb

∣∣∣.
In particular, |f ′(z)|

1–|f(z)|2 ≤ 1
1–|z|2 for all z ∈B(0,1).

Riemannian Metric: A C2 function φ : Ω → R+ defined on
an open connected subset Ω of C, is said to be a
Riemannian metric. If f : B(0,1) →B(0,1) is holomorphic,
then it is distance decreasing with respect to the
Poincare metric: ρ(z) := 1

1–|z|2 defined on B(0,1), that is,
f∗(ρ) ≤ ρ .
Here for any metric φ : Ω → R+ on Ω, and any C2

-function f : Ω̃ → Ω, the pull-back f∗φ is(
f∗φ

)
(z) := |f ′(z)|φ(f(z))

and it defines a metric on Ω̃.
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Ahlfors’ version of the
Schwarz lemma



Ahlfors’ Schwarz lemma

The Gaussian curvature of a Riemannian metric φ2 is
defined to be

Kφ (z) = –φ(z)–2 ∆ logφ(z).

Claim: We will verify that any holomorphic function
f : Ω →B(0,r) defines a metric f∗pr of constant negative
curvature on Ω\{f ′ = 0}, where pr(z) := r

r2–|z|2 is the
Poincare metric of B(0,r) and

(f∗pr)(z) := r|f ′(z)|
r2 – |f(z)|2 , z ∈ Ω\{f ′ = 0}.

Ahlfors’ Lemma: Let φ ≥ 0 be a continuous function on
B(0,1). Assume that φ is C2 on the open set Dφ := {φ > 0}.

Suppose Kφ ≤ –η, on Dφ for some η > 0. Then
f∗(φ)(z) ≤ 4

η
1

1– |z|2 , z ∈B(0,1).
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Proof of the claim: For a holomorphic function f

defined on an open connected set Ω ⊆ C with |f(z)| ≤ r,
we have

∆ log(r2 – |f |2)–1 = –4 ∂ 2

∂ z̄∂z
log(r2 – |f |2)

= 4 ∂
∂ z̄

(
f̄f ′

r2 – |f |2

)
= 4f ′

(
f̄ ′

r2 – |f |2 + f̄f f̄ ′

(r2 – |f |2)2

)
= 4|f ′|2

(
r2 – |f |2 +|f |2

(r2 – |f |2)2

)
= 4

(
r|f ′|

r2 – |f |2

)2

In particular,

∆ log r

r2 – |z|2 = 4
(

r

r2 – |z|2

)2
, |z| < r.
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proof of Ahlfors’ lemma

It is easy, using the chain rule, to verify that φ ∈NC(Ω̃)
implies f∗φ = |f ′| (φ ◦f) is in NC(Ω) if f : Ω → Ω̃ is a
holomorphic maps of open connected sets in C.
Fix ζ ∈ D, and let r ∈ (|ζ |,1). Put pr(z) = r

r2–|z|2 on B(0,r).
Since pr(z) → ∞ as |z| → r and f∗φ is continuous on B[0,r],
it is clear that the function ψ := f ∗φ

pr
attain its maximum

on B(0,r) at some ξ ∈B(0,r). If (f∗φ)(ξ ) = 0, then φ ≡ 0.
Hence we may assume that ξ ∈Dφ . Then ξ is also a
local maximum of logψ , and it follows that ∆ logψ ≤ 0 at q.
Now, at ξ :

0 ≥ ∆ logψ = ∆ logf∗φ – ∆ logpr
≥ 4(f∗φ2 –p2

r),
that is, ψ(ξ ) ≤ 1. Thus f∗φ ≤ pr on B(0,r). Letting r ↑ 1, we
conclude that (f∗φ)(z) ≤ 1

1–|p|2 , z ∈B(0,1), as required.
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applications

Definition: For any open connected set Ω ⊆ C, let NC(Ω)
denote the set of continuous functions φ ≥ 0 on Ω such
that φ is C2 on {φ > 0} and ∆ logφ ≥ 4φ2 there.
As we have said before, using the chain rule, it is easy
to verify:
Proposition: Suppose that f : Ω → Ω̃ is a holomorphic
maps of open connected sets in C. Then φ ∈NC(Ω̃)
implies f∗φ = |f ′| (φ ◦f) is in NC(Ω).
It follows from the Ahlfors lemma that NC(C) = {0}.
Verification: Pick φ in NC(C). Fix a ∈ C. For any r > |a|,
taking f : B(0,r) →B(0,r), f(z) = z, Ahlfors Lemma yields
(f∗φ)(a) = φ(a) ≤ r

r2–|a|2 . As r → ∞, we see that φ(a) = 0.
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applications

Corollary: Let f : C→ Ω, Ω ⊆ C, be a holomophic function.
If NC(Ω) ̸= {0}, then f must be constant.
Liouville’s theorem: As a corollary, taking Ω = B(0,M),
we see that every bounded entire function must be a
constant.
Picard’s little theorem: Similarly, if f : C→ C{0,1}, where
C{0,1} := C\{0,1} is holomophic, then f is constant.
proof: To verify this, all we need to do is show that
NC(C{0,1}) ̸= {0}. The non-zero function

φ(z) = |z|β/2–1|1 –z|β/2–1(1+ |z|β )(1+ |z –1|)β , β > 0,

is in NC(C{0,1}) for 0 < β < 2/7.
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Thank You!
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